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Figure 1: IM2CAD takes a single photo of a real scene (left), and automatically reconstructs its 3D CAD model (right).

Abstract

Given a single photo of a room and a large database
of furniture CAD models, our goal is to reconstruct a
scene that is as similar as possible to the scene depicted
in the photograph, and composed of objects drawn from the
database. We present a completely automatic system to ad-
dress this IM2CAD problem that produces high quality re-
sults on challenging imagery from interior home design and
remodeling websites. Our approach iteratively optimizes
the placement and scale of objects in the room to best match
scene renderings to the input photo, using image compari-
son metrics trained via deep convolutional neural nets. By
operating jointly on the full scene at once, we account for
inter-object occlusions. We also show the applicability of
our method in standard scene understanding benchmarks
where we obtain significant improvement.

1. Introduction
In his 1963 Ph.D. thesis, Lawrence Roberts [34] demon-

strated a system that infers a 3D scene from a single photo
(Figure 2). Leveraging a database of known 3D objects,
his system analyzed edges in the image to infer the loca-
tions and orientations of these objects in the scene. Unlike
the vast majority of modern 3D reconstruction techniques,
which capture only visible surfaces, Robert’s method was
capable of inferring back-facing and occluded surfaces, ob-
ject segments, and recognized which objects are present.

While Robert’s method was visionary, more than a half

(a) (b) (c)
Figure 2: Lawrence Roberts’s (a) 1963 system took an input
photo (b) and computed a 3D scene, rendered to a novel
viewpoint (c).

century of subsequent research in computer vision has still
not yet led to practical extensions of his approach that work
reliably on realistic images and scenes. One major limita-
tion is the need for an accurate, a priori 3D model of each
object in the scene. While a chair model, e.g., is not hard
to come by, obtaining exact 3D models of every chair in the
world is not presently feasible. A further challenge is the
need to reliably match between features in photographs and
CAD models, particularly when the model does not exactly
match the object photographed.

We therefore introduce a variant of Robert’s original
problem, that we call IM2CAD, in which the goal is to re-
construct a scene that is as similar as possible to the scene
depicted in a photograph, where the reconstruction is com-
posed of objects drawn from a database of available 3D ob-
ject models. For example, the bed in Fig. 1 resembles but
does not exactly match the one in the input photograph at
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Figure 3: System overview: an input image (left) is processed through a series of steps to produce a scene CAD model
(bottom right).

left, as we did not have that specific bed in the database.
While our results are not perfect, they represent a signifi-
cant step forward to achieving Robert’s vision on real-world
imagery. Producing CAD models of real scenes has ap-
plications for virtual reality (VR), augmented reality (AR),
robotics, games, and education.

Our work builds on a number of recent advances in the
computer vision and graphics research community. First,
we leverage ShapeNet [6], which contains millions of 3D
models of objects, including thousands of different chairs,
tables, and other household items. This dataset is a game-
changer for 3D scene understanding research, and was key
to enabling our work. Second, we use state-of-the-art ob-
ject recognition algorithms [32] to identify common objects
like chairs, tables, windows, etc.; these methods work im-
pressively well in practice. Third, we leverage deep fea-
tures trained by convolutional neural nets (CNNs) [21] to
reliably match between photographs and CAD renderings
[3, 20, 36, 18]. Finally, we build on recent research on room
reconstruction [15, 22, 27].

Our main contribution is a fully automatic system that
produces full-scene CAD models (room + furniture) from a
single photo. While many of the technical ingredients of our
system draw heavily from prior work (as detailed in the pre-
vious paragraph), we also contribute noteworthy technical
advances on room modeling and scene optimization. Our
room modeling approach produces significant improvement
on standard benchmarks. Our novel full-scene optimization
approach iteratively adjusts the placement and scale of ob-
jects to best align rendered photos with input images, op-
erating jointly on the full scene at once, and accounting for
inter-object occlusions. Our models include semantics (e.g.
“table”, “chair”) segmented into objects, and take only a
few bytes to represent, encoded as a collection of ShapeNet
object IDs and transformations that define position, orien-
tation and scale. We evaluate our performance on scene
understanding using the datasets of [15], LSUN [1], SUN
RGB-D [42] and 3DGP [8]. We show significant improve-
ments in the 2D and 3D room layout estimation as well as

3D object location using only single RGB images.

2. Related Work

The last decade has seen renewed interest in single-
image 3D modeling, following the work of Hoiem et
al., [16] and Saxena et al., [2]. Single-image modeling of
indoor scenes has enjoyed significant recent progress, with
a series of papers on room-shape estimation (floor, walls,
ceiling), e.g., [15, 22, 27, 9, 33] that yield increasingly good
results. Our approach for room shape estimation obtains
competitive results. More recently, researchers have moved
beyond walls, and toward approximating furniture in the
room using cuboids [46, 49, 8, 14, 29, 38]. While the cuboid
based approach avoids the need for object databases, the re-
sulting models are primitive and do not accurately depict
scene appearance.

Another closely related line of research is 3D object and
pose recognition of chairs and other objects [3, 20, 36, 23,
18, 43, 4, 44]. These methods can produce very accurate
alignment of a single object to a photograph or depth im-
age. Our work leverages similar 3D object recognition tech-
niques, combined with room shape estimation, to jointly
solve for all of the objects in the room in a way that ac-
counts for inter-object occlusions. Our work also builds
upon recent advancements of research on object detection
from single images [12, 32].

Researchers have explored a variety of techniques to
automatically compute CAD scene models using non-
photographic means, e.g., using example based ap-
proaches [11], utilizing text descriptions [7], and optimizing
for furniture arrangements in a given space [47, 28]. These
approaches rely on analyzing location and pose correlations
between furniture types, based on analyzing databases of
scene models. Collecting such data is a challenge, and
therefore these approaches can greatly benefit from our so-
lution which generates more comprehensive and plausible
indoor models in a fully automatic fashion.

The closest works to ours are [37] and [25] which find
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Figure 4: Geometric feature and room layout estimation. Results
from (Row1) [22] and (Row2) [15]. Bottom row: our results.

the best matching 3D scene model to a given image. Our
system is a significant advance in a number of ways. In
particular, [37] requires a complete scene in the database
that matches each image. Hence, their approach can be
thought of as “3D scene retrieval,” whereas we recon-
struct each scene from scratch, using a database of furniture
(not scene) models. The latter allows for a much broader
range of reconstructable scenes. While [25] reconstructs
the scene by placing individual pieces of furniture, they
make a number of limiting assumptions (axis aligned furni-
ture, no walls, easy-to-segment objects), operate on a much
smaller database (180 models), and do not demonstrate as
broad a range of results. Both of [37] and [25] use hand-
crafted features, while our proposed method uses CNN fea-
ture which is learned end-to-end on just image data. Guo
et al. [13] render a synthesized model of the scene using
RGBD (depth) images while our method only uses RGB in-
formation. The synthesized rooms produced by [13] have
low fidelity in terms of object details while we retrieve the
detailed ShapeNet CAD model for each object.

In the context of 3D prediction, several previous ap-
proaches estimate the depth and surface normals of visible
surfaces from a single image [10, 48, 4]. In contrast, our ap-
proach does not require dense surface normal estimation but
is capable of estimating both visible and invisible surfaces
through joint estimation of room and object CAD models.

3. Algorithm
Our approach to reconstructing CAD models from an

image (see Figure 3) is based on recognizing objects in the
scene, inferring room geometry, and optimizing 3D object
poses and sizes in the room to best match synthetic render-
ings to the input photo.

The proposed approach involves several steps, as fol-
lows. We first fit room geometry, by classifying pixels as
being on walls, floor, or ceiling, and fitting a box shape to
the result. In parallel, we detect all of the chairs, tables, so-
fas, bookshelves, beds, night tables, chest, and windows in
the scene using state of the art object detection techniques.

Wherever an object, e.g., a bed, is detected with high con-
fidence, we estimate its 3D pose, by comparing its appear-
ance with renderings of hundreds of beds from many dif-
ferent angles, using a deep convolutional distance metric,
trained for this purpose. Finally, we optimize for the place-
ment of all objects in the reconstructed room by optimizing
the difference between the rendered room and the photo-
graph. Our optimization approach operates on all objects
jointly, and thus accounts for inter-object occlusions.

In the remainder of the section, we describe these techni-
cal components in detail: room geometry estimation, object
detection, object alignment, and scene optimization.

3.1. Room Geometry Estimation

Humans are adept at interpreting the shape of a room
(i.e., positions of walls, ceiling, and floor), even in the
presence of significant clutter. Computer vision algorithms
have also become increasingly good at this task in the last
few years by following a paradigm introduced by Hedau et
al. [15] and Lee et al. [22] in which a set of room shapes
are hypothesized (typically 3D boxes), and evaluated using
features in the image.

We improve upon previous approaches to room geome-
try estimation, by adopting an alternative approach for rank-
ing the room 3D box hypothesis using deep convolutional
features. Specifically, we train a network that estimates per-
pixel surface labels (ceiling, floor, left, middle, and right
walls). These features are analogous to the context geomet-
ric feature (“support”, “vertical”, and “sky”) of [17].

Unlike [17] that learns the geometry features from hand-
designed low level descriptors (e.g., color, texture, and other
perspective cues) over superpixels, our method uses an end-
to-end deep Fully Convolutional Network (FCN) [26], us-
ing VGG [41] and converting each fully connected layer
into a convolutional layer with a kernel covering the en-
tire input region. Finally, the weights are fine-tuned for the
pixel-level labeling task. In this work, we produce the out-
put dense score map of size 41 × 41 × 5 given an input
image of 321× 321. We then use upsampling to produce a
probability map with the same size of the input image. We
trained the FCN network on the annotated indoor scenes in
the LSUN dataset [1].

A key advantage of the FCN-based architecture is that
it integrates contextual information over the entire image.
Whereas most methods use a “distractors” class [15, 27] to
remove furniture from consideration, the FCN is able to use
furniture as additional context, e.g., using the presence of a
bookshelf or bed to infer the likely presence of an adjacent
wall. We note that [27] also used a convolutional network,
but rather than classifying surface orientations directly as
we do, they estimate informative edges in the scene, and
employ a second stage to iteratively re-label room surfaces
and rank room box estimates.
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Figure 5: Object detection result on sample images. Each object
category is shown with a different color. The numbers attached to
boxes show the probabilities assigned to each detection.

3.2. Object Detection

The first step in our furniture modeling pipeline is to de-
tect the presence of objects of interest in the image, and
their 2D bounding boxes. While any number of object de-
tectors can be trained, we focused specifically on the fol-
lowing: chair, table, sofa, bookshelf, bed, night table, chest,
and window.

Object detection is an area that has seen explosive
progress in the last several years, and existing methods work
impressively well. In particular, we use the state-of-the-art
Faster-RCNN [32] deep network for detection. This net-
work performs two steps to detect objects. First it produces
object region proposals, and then it computes the likelihood
of each category for the proposed objects using deep convo-
lutional layers. The region proposal layer produces bound-
ing boxes of different scales and aspect ratios. This net-
work is initialized with pre-trained models from large scale
object recognition tasks (ILSVRC2012) [19]. The network
weights are then fine-tuned for the object proposal and ob-
ject detection tasks by minimizing an objective function
for a multi-task loss on bounding box regression and ob-
ject misclassification. The trained network is then able to
produce bounding boxes with object categories for any im-
age. The network output also includes an object score which
shows the probability of that particular object in the bound-
ing box. Greedy non-maximum suppression (NMS) is used
to obtain a single peak detection for each object, remove
low scoring detections that overlap with higher scoring ob-
ject bounding boxes.

Our Faster-RCNN implementation uses VGG16 [41] ar-
chitecture. We further fine-tune the weights of this net-
work for the object detection task on our eight furniture
categories using three publicly available datasets, namely
SUN2012 detection dataset [45], ImageNet detection chal-
lenge dataset [35], and the window category of Rent3D
dataset [24]. We show detection results on a sample of our
images in Figure 5.

3.3. CAD Model Alignment
The object detection results from Section 3.2 identify the

presence of a “chair” (e.g.,) in a certain region of the image
with high probability. Now we wish to determine what kind
of chair it is, its shape, and approximate 3D pose.

Inspired by [3], we solve this retrieval problem by
searching for 3D models that are most similar in appear-
ance to the detected objects in the image. Specifically, we
consider all 3D models in the ShapeNet repository [6] asso-
ciated with our object categories of interest, i.e., chair, table,
sofa, bookshelf, bed, night table, chest, yielding 9193 mod-
els in total. Each 3D model is rendered to 32 viewpoints,
consisting of 16 uniformly sampled azimuth angles and two
elevation angles (15 and 30 degrees above horizontal).

Robust comparison of photos with CAD model render-
ings is not straightforward; simple norms like L2 do not
work well in practice, due to differences in shape, appear-
ance, shading, and the presence of occluders. We achieve
good results, once again, by using convolutional nets (see
Figure 6); we compute deep features for each of the ren-
dered images and the detected image bounding boxes and
use cosine similarity as our distance metric. More specif-
ically, we use the convolution filter response in the ROI-
pooling layer of the fine-tuned Faster-RCNN network [32]
described in Section 3.2. A benefit of using the ROI-pooling
layer is that the length of its feature vector does not depend
on the size and the aspect ratio of the bounding box, thus
avoiding the need for non-uniform rescaling (a source of ar-
tifacts in general). Choosing the rendering that best matches
each image object detection yields an estimate both for the
best-matching CAD model and its approximate 3DOF ori-
entation.

3.4. Object Placement in the Scene
Equipped with a set of CAD models and their approxi-

mate orientations, we now wish to place them in the recon-
structed room. This placement need not be exact, as we will
further optimize it in a subsequent step, but should be a rea-
sonable initial estimate. To this end, we first estimate the
intrinsic camera parameters (K) and camera rotation (R)
with respect to the room space using three orthogonal van-
ishing points [15], and choose one of the visible room cor-
ners as the origin of the world coordinate system. If none
of the corners are visible, we choose the origin to be the
intersection of the visible wall edge with the floor.

The ShapeNet 3D models are normalized with a bound-
ing box corresponding to a unit cube. Based on the align-
ment procedure from Section 3.3, we can determine the in-
put photo pixel locations corresponding to each of the eight
corners of this cube. We can find the object location and
scale in the x and y (parallel to ground plane) directions by
intersecting the ground plane with the ray casted from the
camera center through the input image pixels corresponding
to the bottom four corners of the aligned CAD model cube.



Figure 6: Results of the top five aligned CAD models retrieved for the given object detection bounding box. The retrieved models have
similar style and pose with the given object. Last two rows on the right column show failure cases: (Row1) visual feature confusion
between different poses of the chair, and (Row2) heavy occlusion of sofa by table has made it visually similar to an L-shaped sofa.

To compute the object scale along the z axis, we compute
the ratio between the length of the four vertical edges of
the projected cube and the length of those edges from the
ground plane to the intersection of those lines with the hor-
izontal vanishing line. Note that the height of the vanishing
line is equal to the camera height.

We treat windows as a special case, as they are attached
to walls instead of floor. To place windows, we find the
intersection of the window bounding box from object de-
tection with each of the walls and assign the window to the
wall with which it has the largest overlap. The window’s de-
tected bounding box in the image back-projects to a quadri-
lateral on the assigned wall. The pose and location of win-
dow is determined by the largest axis-aligned rectangle on
the wall plane contained within that quadrilateral.

3.5. Scene Optimization via Render and Match
The placement procedure in Section 3.4 is sensitive to

several sources of error including the quantization of object
orientations, ground plane misregistration, occlusions, and
other factors, which can lead to erroneous estimates of ob-
ject pose and scale. We therefore introduce an optimization
in which the configurations of all objects in the scene are
jointly aligned. A benefit of this procedure is that it prop-
erly accounts for inter-object occlusions, and yields more
accurate estimates for object location, scale, and orienta-
tion.

After estimating the 3D room geometry and the initial
placement of the objects in the scene, we refine our ob-
ject placements by optimizing the visual similarity of the
rendered scene with that of the input image. To this end,
we solve an optimization problem where the variables are
the 3D object configurations in the scene and the objective
function is the minimization of the cosine distance between
the convolutional features obtained from the camera view
rendered scene and the input image.

More formally, suppose we detect objects {O1, ..., Ok}
in the scene. The placement of each object Oi is represented
by its (x, y, z) location, scale along the x, y and z axis as
well as the rotation. The variables for all N objects are con-
catenated into a 7N parameter vector. Given a parameter
vector, we can generate the rendered image of the scene,
denoted I∗. The cost function used in our optimization tries

to minimize the cosine distance between I∗ and the original
input image I:

min Φ(I∗, I) =
1

|C|
∑
Ci∈C

1− Ci(I
∗) · Ci(I)

‖ Ci(I∗) ‖‖ Ci(I) ‖
(1)

We model the feature vector of an image by using the
outputs of all convolutional layers 1. In the above equation,
C refers to the set of conv layers in the network and Ci is
the feature vector obtained from the ith layer. The total cost
function is the average similarity of all layers. The convolu-
tion filters in higher layers of the network provide abstract
shape features while the details of the images such as edges
and corners appear in the features obtained from the lower
layers of the network. The features in higher levels have
larger receptive fields, and can therefore cope with larger
displacements, and help the optimization to converge in the
first iterations when the initial estimates are far off. Sim-
ilarly, the lower convolutional layers play a greater role in
later iterations, to help the objects converge with more pre-
cision. In this way, the network provides a natural coarse-
to-fine structure to the optimization.

Since our objective function is not differentiable we use
COBYLA [30], a derivative free numerical optimization
method, deployed in a Python optimization package. We
found this procedure to work very well in practice. Figure 7
shows the convergence of the method for example scenes.

4. Coloring CAD models
We use a medoid color of each object in the input image

for scene optimization (Section 3.5) and visualization. The
process is as follows. First, we project the best aligned CAD
model of an object onto its bounding box in the image. We
then find the median value of each color channel separately,
and take the closest color which appears within the mask.
We also compute the medoid color for each wall of the room
using a similar approach. We compute the mask of each
wall through the room geometry, and exclude the bounding
boxes from detected objects. This approach works well in

1We use conv1-1, conv1-2, conv2-1, conv2-2, conv3-1, conv3-2,
conv3-3, conv4-1, conv4-2, conv4-3, conv5-1, conv5-2 and conv5-3 lay-
ers in the VGG network
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Figure 7: Results of the joint scene optimization step. (Column 1) The initial object placement in the scene. (Columns 2-5) Rendering
of the scene in sample iterations during optimization. (Column 5) The last iteration of optimization. (Last column) The objective function
error and the optimization convergence. The objective function minimizes dis-similarity between the real and the rendered image. Red
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Method Pixel Error(%)

Lee et al. [22] 24.70
Hedau et al. [15] 21.20
Del Pero et al. [29] 16.30
Gupta et al. [14] 16.20
Zhao et al. [50] 14.50
Schwing et al. [39] 13.59
Ramalingam et al. [31] 13.34
Mallya et al. [27] 12.83
Dasgupta et al. [9] 9.73
Ren et al. [33] 8.67

IM2CAD 10.15

Table 1: Room layout pixel misclassification error on Hedau [15].

practice for scene optimization and creates visually pleasant
renderings without falling into the uncanny valley [40] (see
results in Figure 8).

5. Experimental Results
We evaluate our IM2CAD system both qualitatively and

quantitatively on scene understanding benchmarks.

5.1. Qualitative Evaluation
We evaluated the proposed IM2CAD system with 100

real world indoor images collected from “Zillow Digs” [51].
These images are living room and bedroom shots as our
training object categories are chair, table, sofa, bookshelf,
bed, night table, chest, and window, i.e., typical bedroom
and living room furniture. We cover a variety of room styles
from traditional to modern with various furniture arrange-
ment, complexity, and clutter that are representative of real
world scenes. We also show example results on the SUN
RGB-D dataset.

Our IM2CAD approach consistently produces reason-
able results on most of the test images. Figure 8 is repre-
sentative of the top 30% of our results, where most pieces
of furniture are detected, represented using well-matched
CAD models, and properly posed. Typical failure results
are shown in Figure 9. Our failures are rarely catastrophic,

Method Pixel Error(%)

Hedau et al. [15] 24.23
Mallya et al. [27] 16.71
Dasgupta et al. [9] 10.63
Ren et al. [33] 9.31

IM2CAD 10.04

Table 2: Room layout pixel misclassification error on LSUN [1].

and generally fall into the category of some furniture items
being omitted or misplaced.

Object pose estimation can sometimes get stuck in local
optimal. Notice that the foreground chair in Figure 9(a) is in
an incorrect pose while the chair legs are aligned almost per-
fectly to the image. The last two rows of Figure 6 demon-
strate cases where the visual similarity fails to retrieve ap-
propriate CAD models. Heavily occluded objects impose
additional challenges. Notice the missing chair and coffee
table in Figure 9(a) and (b). If the room shape is not per-
fectly cubic (Figure 9(c)), room layout estimation can fail to
recover the true room shape. The windows can be confused
with paintings as they have very similar visual features (see
Figure 8). Both windows and paintings typically appear as
glassy and shiny rectangular shapes on a wall.

We use Caffe [19] to implement and train our deep net-
works. We learn the weights of our FCN network for the
room geometry estimation using stochastic gradient descent
with initial learning rate of 0.001 and weight decay of 5e-4.
We train our network in 45 epochs where the learning rate
decreases every 15 epochs. For the object detection we use
same threshold for all object categories and only keep the
detection boxes with scores higher that 0.5.

Object detection and geometric feature extraction are
processed on a Titan X GPU, while room layout sampling
and object pose estimation are computed on CPU. For a typ-
ical input image of size 300 × 500, the computational time
is approximately 0.15 seconds for object detection, 0.3 sec-
onds for geometric feature extraction, 8 seconds for room
layout sampling and ranking, and 10 seconds for object
placement. Scene optimization is an iterative process where
each iteration takes about 1 second. We set the maximum



Figure 8: The reconstruction results. In each example the left image is the real input image and the right image is the rendered
3D CAD model produced by IM2CAD. Last row shows example results on the SUN RGB-D dataset.

Method SUN RGB-D 3DGP

Hedau et al. [15] 49.4 47.3
IM2CAD 62.6 63.2

Table 3: 3D room estimation results using voxel IoU on
SUN RGB-D [42] and 3DGP [8] datasets (higher is better).

number of iterations to be 250. The overall CAD model
creation process finishes within 5 minutes.

To produce final room renderings with global illumina-
tion, we use Blender Cycle Render Engine [5], with fixed
lighting consisting of distant sunlight from the top right
point and five area lights on the ceiling. The final rendering
process takes about 15 minutes with global illumination.

5.2. 2D Room Layout Estimation
To evaluate the accuracy of room layout estimation, we

compute the pixelwise difference between the predicted lay-
out and the ground truth layout labels, averaged across all
images as the evaluation metric. We evaluated on the test
split of [15] dataset (we do not use their training split).
Our FCN features (without 3D box estimation) achieve
a 12.4% pixel misclassification error compared to 28.9%
of [17] on the leading benchmark dataset [15] (see Fig-
ure 4). When combined with a box-fitting step of [15, 22],
we achieve competitive result of 10.15% error compared
with [9] and [33] as shown in Table 1. More specifically,
we improve the reported result of [27] by 2.7%, [9] by
3.1%, and [33] by 4.2%. As an ablation study to evalu-

SUN RGB-D 3DGP
Method voxel IoU mAP voxel IoU mAP

3DGP [8] 38.7 42.1 38.4 59.7
IM2CAD (w/o optim.) 46.1 74.7 53.5 86.6
IM2CAD (w/ optim.) 49.0 75.6 53.8 86.6

Table 4: 3D scene free space prediction (voxel IoU) and
object localization (mAP) results on SUN RGB-D [42] and
3DGP [8] datasets (higher is better).

ate the effect of different room hypothesis estimation ap-
proaches, we tested our approach while being combined
with either of [15] or [22] and we obtain an error of 11.02%
and 11.13%, respectively.

We also evaluated performance on the task of room lay-
out pixel misclassification using the LSUN dataset [1]. As
summarized in Table 2, IM2CAD outperforms previous ap-
proaches [15, 27] significantly as well as [9] and obtains
competitive results with recent approach of [33].

5.3. 3D Room Estimation and Scene Understanding
Our IM2CAD system is also applicable for 2D and 3D

scene understanding as well as room layout estimation. For
evaluating our performance in scene understanding tasks,
we use the SUN RGB-D dataset [42]. This dataset contains
images captured from different view points, some of the im-
ages have low field of view and a considerable number of
them are captured from highly cluttered scenes. Note that,
although the SUN RGB-D dataset contains the depth data
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Figure 9: Failure cases: inaccurate chair pose (a); mis-detection of a chair (a) and table (b); non-cubic room shape (c).

for all the images, we do not use the depth information at
either train or test time, but estimate the 3D room geom-
etry as well as object layout using only single 2D images.
We use the test split for the bedroom and living room scene
categories with a total of 484 images.

3D Room Layout Estimation 3D room layout estimation
enables precise reasoning about free space versus spaces oc-
cupied by objects. In the absence of depth data, this task is
challenging as it requires reasoning about room geometry
from 2D images. Our 3D room layout estimation is eval-
uated by computing the intersection over union (IoU) be-
tween the predicted and the ground truth free spaces. Fol-
lowing [42], we assume empty rooms without objects and
define a voxel grid of 0.1 × 0.1 × 0.1 meter. The effective
voxels are the ones that are located within 0.5 and 5.5 me-
ters from the camera and are inside the field of view. We
check whether each voxel is inside the 3D room polygon
and compute the intersection and union computed by count-
ing the 3D voxels. Table 3 summarizes our obtained results.
Our method outperforms [15] by 13.2%.

Scene Understanding The task of scene understanding
integrates recognition and localization of all the objects as
well as estimating the room structure. Compared to the task
of 3D room estimation, this is a more challenging task as it
requires detecting non-free spaces occupied by the objects.
We compute the distance between the projection of the box
centroid on the ground plane for all pairs of predicted and
ground truth objects with the same label. We sort the dis-
tances in ascending order for each available pair and choose
the pair with the shortest distance while the two boxes are
marked as unavailable. We compute the precision and recall
by varying the distance threshold and use the mean average
precision as object localization metric.

Free space prediction is evaluated in a similar manner to
the 3D room layout. The visible 3D voxels for the free space
inside the room polygon but outside any object bounding
box is computed and then the IoU between the free space
prediction and the ground truth is computed. Table 4 shows
the results of free space prediction and object localization
on SUN RGB-D dataset. We compare the performance of
our approach for scene understanding with [8]. IM2CAD
obtains superior results compared with [8] in both metrics
i.e., 33.5% boost in the mean AP and 11.7% in scene free
space prediction. We compare our results before and after
applying scene optimization (Section 3.5). Our scene opti-
mization approach results in improved accuracy for the task
of scene understanding.

We also report IM2CAD performance on the dataset pre-
sented in [8] which we call 3DGP. We use 372 images from
the test split of living room, bedroom and dining room cat-
egories. However, we do not train our model on the 3DGP
training set. To estimate the ground truth camera parame-
ters, we compute the pseudo ground truth vanishing points
by using the annotated ground truth edges corresponding to
the three vanishing points following the experimental set-
ting of [8] for 3D scene evaluation. We evaluate on the three
tasks of 3D room layout, whole scene free space prediction,
and object localization. These results are summarized in Ta-
bles 3 and 4. For the task of 3D room estimation, IM2CAD
significantly outperforms [8] by 15.9%. In the free space
prediction task, IM2CAD obtains significantly better results
than 3DGP in both voxel IoU and mean AP criteria.

6. Conclusion
This paper presents a fully automatic system that recon-

structs a 3D CAD model of an indoor scene from a single
photograph, by utilizing a large database of 3D furniture
models. It estimates room geometry, and detects and aligns
objects in the image with accurate 3D poses. We introduce
novel approaches for room modeling and scene optimiza-
tion, that are keys to the success of our system. We evaluate
on a wide range of living room and bedroom photographs
with a variety of home styles. The results demonstrate the
effectiveness of our approach in creating 3D CAD models
that faithfully resemble the real scenes. With the abundance
of indoor photos available online, our system is applicable
to produce a large database of indoor scene models. Our
approach obtains significant improvement on the 2D room
layout estimation and 3D scene understanding benchmarks.

Our system does have limitations suggesting a number of
areas for future work. We assume the room geometry in the
image can be modeled with a cube. Working with compli-
cated room geometry is an area of future improvement. Un-
derstandably, heavily occluded objects impose challenges.
We assume objects are always on the ground plane (e.g.,
chairs and beds) or attached to walls (windows), posing a
lamp on a table would require extension of our work. In-
corporating more object types would lead to more general
scenes and room types (e.g. kitchens and bathrooms).
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